Derivatives of Trig Functions

(Math | Derivatives | TableOf | Trig)

(d-dx) sin(x) : Algebraic Method

Given : lim(d->0) sin(d)/d = 1

(d-dx) sin(x) = lim(d->0) ( sin(x+d) - sin(x) ) / d
= lim ( sin(x)cos(d) + cos(x)sin(d) - sin(x) ) / d
= lim ( sin(x)cos(d) - sin(x) )/d + lim cos(x)sin(d)/d
= sin(x) lim ( cos(d) - 1 )/d + cos(x) lim sin(d)/d
= sin(x) lim ( (cos(d)-1)(cos(d)+1) ) / ( d(cos(d)+1) ) + cos(x) lim sin(d)/d
= sin(x) lim ( cos^2(d)-1 ) / ( d(cos(d)+1 ) + cos(x) lim sin(d)/d
= sin(x) lim -sin^2(d) / ( d(cos(d) + 1) + cos(x) lim sin(d)/d
= sin(x) lim (-sin(d)) * lim sin(d)/d * lim 1/(cos(d)+1) + cos(x) lim sin(d)/d
= sin(x) * 0 * 1 * 1/2 + cos(x) * 1 = cos(x)

(d-dx) cos(x) : From the derivative of sine

This can be derived just like (d-dx) sin(x) was derived or more easily from the result of (d-dx) sin(x)

Given : (d-dx) sin(x) = cos(x). Chain Rule.

cos(x) = sin(x + PI/4)
(d-dx) cos(x) = (d-dx) sin(x + PI/4)
= (d/du) sin(u) * (d-dx) (x + PI/4) (Set u = x + PI/4)
= cos(u) * 1 = cos(x + PI/4) = -sin(x)

(d-dx) tan(x) : From the derivatives of sine and cosine

Given : (d-dx) sin(x) = cos(x). (d-dx) cos(x) = -sin(x). Quotient Rule

tan(x) = sin(x) / cos(x)
(d-dx) tan(x) = (d-dx) sin(x)/cos(x)
= ( cos(x) (d-dx) sin(x) - sin(x) (d-dx) cos(x) ) / cos^2(x)
= ( cos(x)cos(x) + sin(x)sin(x) ) / cos^2(x)
= 1 + tan^2(x) = sec^2(x)

(d-dx) csc(x), (d-dx) sec(x), (d-dx) cot(x) : From derivatives of their inverse functions

Given : (d-dx) sin(x) = cos(x), (d-dx) cos(x) = -sin(x), (d-dx) tan(x) = cot(x). Quotient Rule.

(d-dx) csc(x) = (d-dx) 1/sin(x) = ( sin(x) (d-dx) 1 - 1 (d-dx) sin(x) ) / sin^2(x) = -cos(x) / sin^2(x) = -csc(x)cot(x)
(d-dx) sec(x) = (d-dx) 1/cos(x) = ( cos(x) (d-dx) 1 - 1 (d-dx) cos(x) ) / cos^2(x) = sin(x) / cos^2(x) = sec(x)tan(x)
(d-dx) cot(x) = (d-dx) 1/tan(x) = ( tan(x) (d-dx) 1 - 1 (d-dx) tan(x) ) / tan^2(x) = -sec^2(x) / tan^2(x) = -csc^2(x)